

JJEB MOCK EXAMS 2020 535/1 PHY GUIDE

Solution	Remarks	Mark
SECTION A (40 MARKS)	1	
	į,	@01mark
	,	
8. A 10. B 24. B 32. A 40. A		0)04 1
SECTION B (40 MARKS)		@)04mrks
Linear momentum refers to the		
		*
•		
voicety.		
Rate of change of momentum		
= 		
2.4(36–12)		
$=\frac{211(33-12)}{10}$		
	and the second	
<u> </u>		
		·
in the same medium,		
- Have high frequencies and short		
1		•
	1	
_		
- Can blacken a photographic film.		
	SECTION A (40 MARKS) 1. A 9. C 17 B 25 C 33. A 2. A 10. B 18. B 26. B 34. D 3. A 11. A 19. B 27. C 35. C 4. C 12. A 20. D 28. D 36. C 5. D 13. D 21. C 29. D 37. C 6. B 14. A 22. C 30. A 38. C 7. A 15. A 23. B 31. D 39. D 8. A 16. B 24. B 32. A 40. A SECTION B (40 MARKS) Linear momentum refers to the product of mass of a body and its linear velocity. Rate of change of momentum $= \frac{mv - mu}{t}$ $= \frac{2.4(36-12)}{10}$ $= 5.76 kg m^{-2}$ An electromagnetic wave refers to a high frequency wave produced when an electric and magnetic fields oscillate perpendicular to each other in the same medium. - Have high frequencies and short wavelength compared to other waves - Travel at $3.0 \times 10^8 ms^{-1}$. - They are transverse waves. - Travel in straight lines. - Can travel through a vacuum. - Are highly penetrative.	SECTION A (40 MARKS) 1. A 9. C 17. B 25. C 33. A 2. A 10. B 18. B 26. B 34. D 3. A 11. A 19. B 27. C 35. C 4. C 12. A 20. D 28. D 36. C 5. D 13. D 21. C 29. D 37. C 6. B 14. A 22. C 30. A 38. C 7. A 15. A 23. B 31. D 39. D 8. A 16. B 24. B 32. A 40. A SECTION B (40 MARKS) Linear momentum refers to the product of mass of a body and its linear velocity. Rate of change of momentum $= \frac{mv - mu}{t}$ $= \frac{2.4(36-12)}{10}$ $= 5.76 kg m^{-2}$ An electromagnetic wave refers to a high frequency wave produced when an electric and magnetic fields oscillate perpendicular to each other in the same medium. - Have high frequencies and short wavelength compared to other waves - Travel at $3.0 \times 10^8 ms^{-1}$. - They are transverse waves. - Travel in straight lines. - Can travel through a vacuum. - Are highly penetrative.

			Mark
		Remarks	
Number	Solution		
(b)	Plane incident wave fronts Circular Diffracted waves interfere Diffracted wave fronts		
2 12 ()(i)	4- Cooling fins.		
Qn 43 (a)(i)	B- Filament heater.		
(ii)	 A- To conduct heat from the hot anode to the surrounding. B- To heat the cathode so as to emit electrons thermionically. 		
(b) (i)	Tungsten has a high melting point compared to other readily available metal targets.		
(ii)	To prevent electrons from colliding with the air molecules which would reduce the kinetic energy of electrons, hence affecting <i>X</i> -ray production.		,
Qn 44 (a)(i)	Primary cell refers to a cell which		
	can not be recharged once used up.		
(ii)	 ✓ Polarization. This can be minimised by; - - Adding a depolarizer (potassium dichromate) to oxidize hydrogen into water. - Brushing off the hydrogen bubbles from the copper plate using a small paint brush. 		

Number	Solution		
	✓ Local action.	Remarks	Mark
	This can be minimized by; Cleaning the zinc plate using sulphuric acid and rubbing it with mercury (Zinc amalgamation).		
(b)	- Using pure zinc. Using, $E = I(R+r)$, $E=1.5V$,	t t	
	$I = 0.125 A, R = 10\Omega$ $\Rightarrow 1.5 = 0.125(10 + r)$ $\therefore \text{Internal resistance } r = 20$		
	:. Internal resistance, $r = 2\Omega$		
Qn 45 (a)	Acceleration due gravity refers to the rate of change of velocity with time for a free falling object.		
(b)	By conservation of energy; Gain in K.E = Loss in P.E $\Rightarrow \frac{1}{2}mv^2 = mg(h - h')$		
	$\Rightarrow v^2 = 2 \times 10 \times (60 - 36)$ ∴ $v = 21.9089023 ms^{-1}$		
Qn 46 (a)	Look into the solenoid in which the bar is placed. If the current flow is in clockwise direction then, the pole is a south pole. However, if the current flow is in anti-clockwise direction then, the pole is a north pole.		
(b)			
(c)	Increasing the size of current through the wire.Increasing the number of wires		

Turn Over

Number	Solution		Remarks	Mark
Qn 47(a)(i)				
	spontaneous disintegration of an un-stable			
	nucleus into a stable nucleus with the			
	emission of radiation	ns.		
(ii)	Differences;			
	Alpha particles	Beta particles		
	-Positively	-Negatively		
	charged.	charged.		
	- More ionizing.	- Less ionizing.		
	- Less penetrative.			-
	- Can be stopped	- Can be stopped		- W. O. S. Silvano
	by a thick piece of	1 1		1000
	paper.	aluminium.		
(b)	Similarities; - Blacken photograp - Ionize gas molecul - Deflected by a may - Deflected by an ele - Penetrate through - Cause fluorescence fluorescent material No. of No.	les. gnetic field. ectric field. matter. e when they strike s.		
	protons electr			
	138 138	$\begin{bmatrix} 250-138 \\ = 112 \end{bmatrix}$		
Qn 48 (a)	Specific heat capac			
	quantity of heat requ			-
	temperature of 1kg	of a substance by 1K.		et :
(b)	$Q = (m_i c_i \Delta \theta + m_i)$ $\Rightarrow Q = 2.5(2100)$	$(u_w L_f), m_i = m_w$ (0-15) + 356000		
	$\therefore Q = 968750J$	(- 15/11,550000)		
	1. Q - 308/30J			

Number	Solution	Remarks	Mark
Qn 49 (a)	Power P -		
	Power, $P = \frac{1}{f(\text{in metres})}$. But,		
	$f = +20cm = +\frac{20}{100} = +0.2m$.		
	Thus, $P = \frac{1}{0.2} = +5 \mathrm{D}$,
(b)	O C F		
	Characteristics;	,	
	The image formed is; -		
	- Real		
	- Inverted.		
	- Diminished.		
	- Between F and C.		
Qn 50 (a)	Archimedes' principle states that when		
	a body is wholly or partially immersed		
	in a fluid, it experiences an up thrust		
	which is equal to the weight of the fluid		
	displaced.		
(h)	- The buoy.		
(b)	- Ships and boats.		
	- Submarines.		
	- Meteorological (hot air) balloons.		
	- Microfological (not any barroons)		
(c)	The metals used are made hollow and		
	thus contain air. The average density of		
	the ship is thus less than the density of		
	the displaced water. Therefore, up thrust		
	due water is greater than the weight of		
	the ship and so, the ship floats on water.		
	-		